Linear Algebra and Differential Equation
Matrices and their operations. Types of matrices. Elementary transformations. Linear systems of equations. Determinants, elementary properties. Inverse of a matrix. Vector spaces, linear independence,
-
- Introduction
-
CHAPTER 1 System of Linear Equation and Matrices
- 1.1 Linear Equation 11:41
- 1.1 Solution of System of Linear Equations 13:56
- 1.1 Introduction to Matrices 06:31
- 1.1 Type of Matrices 10:32
- 1.1 Augmented Matrix 07:40
- 1.1 Elementary Row Operation 08:05
- 1.1 Extra Example 02:41
- 1.1 Solving Linear system (with unique solution) 13:52
- 1.1 Example 1 08:42
- 1.1 Example 2 06:17
- 1.1 Example 3 06:31
- 1.1 Some Notes 04:48
- 1.1 Solving Many Systems 09:22
- 1.2 Reduced Echelon Form 07:00
- 1.2 Examples of Reduced Echelon Form 05:49
- 1.2 Finding Reduced Echelon Form 13:01
- 1.2 Example 1 07:57
- 1.2 Example 2 12:21
- 1.2 Example 3 10:09
- 1.2 Example 4 08:03
- 1.2 Example 5 05:56
- 1.2 Homogeneous Linear System 08:47
- 1.3 Gauss Elimination 33:26
-
CHAPTER 2 Matrices
- 2.1 Equal Matrices 05:55
- 2.1 Adding Two Matrices 04:15
- 2.1 Scalar Multiplication of Matrices 05:00
- 2.1 Multiplication of Two Matrices 12:10
- 2.1 Examples of Multiplying Two Matrices 09:00
- 2.1 More Examples of Multiplying Matrices 03:01
- 2.1 Special Matrices 04:52
- 2.1 Properties of Identity Matrix and Zero Matrix 05:08
- 2.1 Partitioning of Matrices 12:18
- 2.2 Algebraic Properties of Matrix Operation 11:34
- 2.2 Number of Multiplications 14:49
- 2.2 Cancellation Law 05:42
- 2.2 Powers of Matrices 08:27
- 2.2 Idempotent and Nilpotent 06:05
- 2.3 Transpose 08:36
- 2.3 Symmetric Matrices 07:03
- 2.3 If and Only If 08:06
- 2.3 Trace of a Matrix 07:48
- 2.3 Matrices With Complex Elements 13:58
- 2.3 Conjugate , Conjugate Transpose, Hermitian 05:48
- 2.4 Inverse of Matrices 08:46
- 2.4 Finding The Inverse 11:35
- 2.4 Properties of Matrix Inverse 10:41
- 2.4 Solving Linear System Using Inverse Matrix 13:13
- 2.4 Elementary Matrix 04:35
- 2.4 Row Operations Using Elementary Matrices 10:10
-
CHAPTER 3 Determinants
- 3.1 The Determinant of 2x2 Matrices 06:04
- 3.1 Minor and Cofactor of Elements 09:11
- 3.1 Finding Determinant of Any Square Matrix 10:21
- 3.1 Theorem 3.1 14:48
- 3.1 The Determinant of 3x3 Matrices 04:51
- 3.2 Properties of Determinants Part 1 09:44
- 3.2 Properties of Determinants Part 2 11:20
- 3.2 Properties of Determinants Part 3 11:10
- 3.2 Properties of Determinants Part 4 13:20
- 3.3 Upper and Lower Triangular Matrix 07:21
- 3.3 Evaluating Determinant by Row Operations 12:56
- 3.4 Adjoint Matrix 08:25
- 3.4 Finding Inverse by Adjoint Matrix 09:16
- 3.4 Example of Finding Inverse by Adjoint Matrix 09:58
- 3.4 The Relation Between Determinant and Inverse 04:56
- 3.4 Example of The Relation Between Determinant and Inverse 08:56
- 3.4 The Relation Between Solution of a System and Determinant of Coffeciant Matrix 05:57
- 3.4 Example of The Relation Between Solution of a System and Determinant of Coffeciant Matrix 04:05
- 3.4 Cramer's Rule 07:50
- 3.4 Proof of Cramer's Rule 03:57
- 3.4 Example of Cramer's Rule 04:39
- 3.4 Example 6 07:34
-
CHAPTER 4 Vector Spaces
- 4.1 Introduction to Vectors 04:20
- 4.1 Operation on Vectors 05:10
- 4.1 Examples of Addition and Scalar Multiplication in Vector 07:20
- 4.1 Properties of Rn 06:13
- 4.2 Dot Product 06:56
- 4.2 Norm Vector 04:24
- 4.2 Unit Vector 06:37
- 4.2 The Angle Between Vectors in Rn 05:05
- 4.2 Orthogonal Vectors 09:18
- 4.2 Distance Between Vectors 06:54
- 4.3 Vector Space 20:58
- 4.3 Matrices of Size 2X2 is a Vector Space 08:19
- 4.3 Vector Space of Function 07:26
- 4.3 Useful Properties 04:02
- 4.4 Subspaces 08:30
- 4.4 Examples of Subspace and not Subspace Set 07:08
- 4.4 Vector Space of Polynomial 08:43
- 4.5 Linear Combination 06:58
- 4.5 Is the Vector Linear Combination of Other Vectors ? 06:52
- 4.5 Express Vector as Linear Combination ofSome Vectors 05:10
- 4.5 Liner Combination in Matrices 08:42
- 4.5 Linear Combination in Function 04:33
- 4.5 Spaning Set 11:14
- 4.5 Spanning Set is a Subspace of V 08:37
- 4.5 Equal Spanning Set 09:57
- 4.5 Example 11 04:01
- 4.6 Linearly Dependent and Independent 11:21
- 4.6 More in Linearly Dependent and Independent 07:59
- 4.6 Some Theorems 06:19
- 4.7 Basis 22:19
- 4.7 Some Theorems about Basis 12:11
- 4.7 Dimension 09:16
- 4.7 Some Theorems about Dimension 08:57
- 4.7 True or False 06:49
-
CHAPTER 5 Eigenvalues and Eigenvectors
- 5.1 The Meaning of Eigenvalue and Eigenvector 06:23
- 5.1 Computing Eigenvalues and Eigenvectors 16:40
- 5.1 Example 1 (Finding Eigenvalue and Eigenvector for 2x2 Matrix) 11:58
- 5.1 Eigenspace 03:44
- 5.1 Example 1 (Finding Eigenvalue and Eigenvector for 3x3 Matrix) 20:31
- 5.3 Similar Matrices 03:09
- 5.3 The Eigenvalues of Similar Matrices 04:21
- 5.3 Diagonalization 03:55
- 5.3 Diagonalizable Matrix 05:27
- 5.3 Example 4 07:56
- 5.3 Computing Powers of a Matrix by Diagonalization 08:46
- 5.3 Example of a Matrix that it is not Diagonalizable 03:42
- 5.3 Symmetric Matrices 02:59
-
CHAPTER 4 Vector Spaces (from the book) فقط للترم الصيفي
- 4.1 vectors in a plane 16:34
- 4.1 Vectors in Rn 19:59
- 4.1 Theorem 4.3 29:23
- 4.1 Linear Combination 16:20
- 4.2 The Meaning of Vector Space 11:04
- 4.2 Some Example about Vector Spaces 08:28
- 4.2 Showing That a Polynomial of Degree 2 or Less Is a Vector Space 15:24
- 4.2 More About Vector Space 13:15
- 4.2 Example of Sets That Is Not a Vector Space 15:01
- 4.3 Subspaces 14:30
- 4.3 Theorem 4.5 10:20
- 4.3 Examples of Subspace and not Subspace Set 17:50
- 4.3 More Examples about Subspaces 22:40
- 4.4 Linear Combination 06:31
- 4.4 Finding Linear Combination 15:43
- 4.4 Spanning Vector Space 25:42
- 4.4 Testing for Spanning 17:24
- 4.4 Span of a Set 12:57
- 4.4 Linearly Independent and Linearly Dependent 17:03
- 4.4 Testing for Linear Independence 10:45
- 4.4 More Examples in Linearly Independent and Linearly Dependent 17:25
- 4.4 Linearly Dependent 20:20
- 4.5 Basis 17:34
- 4.5 More Examples about Basis 11:30
- 4.5 Basis and Linear Dependence 19:54
- 4.5 Number of Vectors in a Basis 07:56
- 4.5 Dimension 17:47
-
CHAPTER 7 Eigenvalue and Eigenvector (from the book) فقط للترم الصيفي
-
Exercises of linear algebra
- 1.1 Matrices and System of Linear Equations part 1 (Q1,Q2,Q4,Q5) 09:33
- 1.1 Matrices and System of Linear Equations part 2 (Q6,Q7) 10:20
- 1.1 Matrices and System of Linear Equations part 3 ( Q10(a,b) ) 10:54
- 1.1 Matrices and System of Linear Equations part 4 ( Q10(c) ) 10:21
- 1.1 Matrices and System of Linear Equations part 5 ( Q10(d,e) ) 15:00
- 1.1 Matrices and System of Linear Equations part 6 (Q10(f), Q13) 12:36
- 1.1 Matrices and System of Linear Equations part 7 ( Q11(e) ) 07:04
- 1.1 Matrices and Systems of Linear Equations (Q11(d), !2(a)) 17:10
- 1.2 Gauss Jordan Elimination part 1 ( Q2, Q5(a) ) 14:33
- 1.2 Gauss Jordan Elimination part 2 (Q5(b,c)) 14:28
- 1.2 Gauss Jordan Elimination part 3 (Q5(d,e,f)) 09:19
- 1.2 Gauss Jordan Elimination part 4 (Q8(a)) 11:56
- 1.2 Gauss Jordan Elimination part 5(Q8(b,c,d,e)) 08:34
- 1.2 Gauss Jordan Elimination part 6 (Q8(g,f), Q14(a,b)) 13:46
- 1.2 Gauss Jordan Elimination part 7 (Q1, Q3(a,c,d,e),Q6(f),Q7(d)) 21:20
- 1.2 Gauss-Jordan Elimination (Q6(a,c,e), Q7(c,e)) 39:19
- 2.1 Addition, Scalar Multiplication, Multiplication of Matrices Part 1 (Q5) 16:41
- 2.1 Addition, Scalar Multiplication, Multiplication of Matrices Part 2 (Q8,Q11,Q17) 15:14
- 2.1 Addition, Scalar Multiplication, Multiplication of Matrices Part 3 (Q2, Q4, Q12, Q16) 30:44
- 2.1 Addition, Scalar Multiplication, and Multiplication of Matrices ( Q1(a,b,e,f), Q3(a,b,c,d,h) Q9(b,c,e,g) Q10(a)) 26:22
- 2.2 Properties of Matrix Operations Part 1 (Q6,Q8) 08:46
- 2.2 Properties of Matrix Operations Part 2 (Q19, Q27) 09:54
- 2.2 Properties of Matrix Operations Part 3 (Q31, Q11) 10:13
- 2.2 Properties of Matrix Operations Part 4 (Q3, Q4(a,c), Q5(a), Q12(b,c), Q17, Q24, Q29(a)) 21:41
- 2.2 Properties of Matrix Operations (Q1(a), Q5(c,d), Q30, Q32(c)) 19:18
- 2.3 Symmetric Matrices Part 1 ( Q1(a,d), Q2(a,b,c), Q3(a,b) ) 07:32
- 2.3 Symmetric Matrices Part 2 ( Q5(a,b), Q11, Q23 ) 15:52
- 2.3 Symmetric Matrices Part 3 ( Q1(e,f), Q3(c,e), Q15 ) 09:33
- 2.3 Symmetric Matrices (Q1(i), Q3(d), Q6, Q7, Q14) 17:58
- 2.4 The Inverse of a Matrix Part 1 (Q3(a), Q4(a), 6(a)) 10:10
- 2.4 The Inverse of a Matrix Part 2 (Q6(b,c), Q7(a,b), Q8(a,b)) 14:28
- 2.4 The Inverse of a Matrix Part 3 (Q9(a), Q14, Q15) 10:36
- 2.4 The Inverse of a Matrix Part 4 (Q16, Q19) 07:04
- 2.4 The Inverse of a Matrix Part 5 (Q21) 06:00
- 2.4 The Inverse of a Matrix Part 6 (Q1(b), Q2(b), Q3(b,e), Q4(d), Q5(b), Q7(c), Q9(b), Q18) 52:10
- 2.4 The Inverse of a Matrix (Q1(a,c), Q3(c), Q5(c), Q7(d), Q13, Q17) 30:20
- 3.1 Introduction to Determinants Part 1 (Q1,Q3,Q5) 14:14
- 3.1 Introduction to Determinants Part 2 (Q7) 08:20
- 3.1 Introduction to Determinants Part 3 (Q9) 06:13
- 3.1 Introduction to Determinants Part 4 (Q11, Q13) 15:29
- 3.1 Introduction to Determinant Part 5 (Q6(b), Q8(b), Q14) 22:45
- 3.2 Properties of Determinants Part 1 (Q1) 11:25
- 3.2 Properties of Determinants Part 2 (Q3, Q5, Q7) 12:59
- 3.2 Properties of Determinants Part 3 (Q9, Q13) 10:04
- 3.2 Properties of Determinant ( Q4, Q6(a,b), Q8, Q12(c) ) 17:01
- 3.3 Determinants, Matrix Inverse and Systems of Linear Equations Part1 (Q1, Q5) 11:59
- 3.3 Determinants, Matrix Inverse and Systems of Linear Equations Part 2 (Q7) 09:55
- 3.3 Determinants, Matrix Inverse and Systems of Linear Equations Part 3 ( Q9, Q11(a) ) 14:13
- 3.3 Determinants, Matrix Inverse and Systems of Linear Equations Part 4 (Q11(b,c), Q13, Q15) 10:27
- 3.3 Determinant, Inverse Matrix, Linear System part 5( Q3(b), Q4(b), Q6(c), Q8(b), Q10(a) ) 20:46
- 3.3 Determinant, Inverse Matrix, Linear System part 5( Q3(a,d) ) 05:01
- 1.3 The Vector Space Rn (Q3(a,c), Q5(a,b,c,h), Q7, Q9, Q10(a,c)) 13:00
- 1.3 The Vector Space Rn (Q5(a,g), Q6(b,d)) 03:36
- 1,6 Dot Product, Norm, Angle and Distance (Q3, Q7, Q8, Q9, Q11, Q13, Q16(a,c), Q17(a,c), Q26(a,c,e), Q36) 19:54
- 1.6 Dot Product, Norm, Angle and Distance (Q2(a,b), Q4(a,c), Q6(a,e), Q10(a,c), 12(a,b), Q26(d), Q16(e), Q33, Q35) 08:57
- 4.1 General Vector Spaces and Subspaces Part 1 (Q5, Q7, Q11) 06:26
- 4.1 General Vector Spaces and Subspaces Part 2 (Q13, Q15, Q19, Q21, Q23, Q25, Q27, Q29, Q33) 27:20
- 4.1 General Vector Space and Subspace (Q14, Q18(c), 22(c), 28(a)) 10:49
- 4.2 Linear Combination of Vectors Part 1 (Q1, Q3) 13:19
- 4.2 Linear Combination of Vectors Part 2 (Q5, Q7) 09:53
- 4.2 Linear Combination of Vectors Part 3 (Q9, Q11, Q15, Q17) 19:48
- 4.2 Linear Combinations of Vectors (Q2(a), Q4(c), Q8(a)) 10:57
- 4.3 Linear Independence of Vectors Part 1 (Q1, Q3) 12:39
- 4.3 Linear Independence of Vectors Part 2 (Q7, Q9) 07:43
- 4.3 Linear Independence of Vectors Part 3 (Q11, Q15, Q16) 09:30
- 4.3 Linear Independence of Victors Part 4 (Q2(b), Q6(d), Q8(c)) 09:47
- 4.4 Properties of Basis (Q1, Q5, Q11, Q13, Q15, Q17) 18:47
- 4.4 Properties of Basis (Q2(a), Q3(b), Q4(a), Q6(a,c), Q10, Q16(b), Q20(a,d)) 08:55
- 3.4 Eigenvalue and Eigenvectors Part 1 (Q1) 08:09
- 3.4 Eigenvalue and Eigenvectors Part 2 (Q9) 09:49
- 3.4 Eigenvalue and Eigenvectors Part 3 (Q10) 09:44
- 3.4 Eigenvalue and Eigenvectors Part 4 (Q13) 06:58
- 3.4 Eigenvalue and Eigenvectors Part 5 (Q15) 07:52
- 3.4 Eigenvalue and Eigenvectors Par6 (Q24, Q26, Q32) 09:26
- 5.3 Diagonalization of a Matrix Part 1 18:31
- 5.3 Diagonalization of a Matrix Part 2 05:04
- 1.4 Subspace of Rn 08:23
- 1.5 Basis and Dimension in Rn 17:40
-
Exam of Linear algebra
-
Homeworks of linear algebra
- Homework 1 part1 17:21
- Homework 1 part2 13:42
- Homework 1 part3 17:26
- Homework 1 part4 14:17
- Homework 2 part1 23:31
- Homework 2 part2 30:00
- Homework 3 part1 16:11
- Homework 3 part2 28:30
- Homework 4 27:23
- Homework 5 52:27
- Homework 6 (Solve Caramer's rule) 13:47
- Homework 7 (true or false about ch 4 ) 17:57
- مقاطع لأهم الأساسيات
- الكويز والميد الخاص بالمعادلات التفاضلية
-
First Order Differential Equations
-
Second-Order DE - Homogeneous
-
Second-Order DE - Non Homogeneous
-
Sec.4.4 Undetermined Coefficients- Superposition Approach
-
تمارين المعادلات التفاضلية
-
Final Exam
- Matrices and their operations. Types of matrices. Elementary transformations. Linear systems of equations. Determinants, elementary properties. Inverse of a matrix. Vector spaces, linear independence, finite dimensional spaces, linear subspaces. Eigenvalues and Eigenvectors of a matrix linear . Diagonalizable Matrix
-
Student feedback
5.00
500 SAR
Lectures
293 Videos
Duration
64:34:47
Material
16 Files
Assignments
No
Labs
No
Project
No
Certificate
Not Applicable
Reviews (3)
Real reviews from real students.
الله يسعد الاستاذة هديل و لاننسى الاستاذة حنين الله يوفقهم و يسعدهم
شرح جداً جميل ومغطي كل المنهج شكراً لك وربي يسعدك
اشتركت مع مس هديل بثلاث مواد ولا ندمت الحمدلله تبسط المعلومة وشرحها واضح، مس حنين كذلك شرحها بالمعادلات التفاضلية كان واضح ومبسط. أنصحكم تشتركون معهم.