حساب التفاضل و التكامل 2 _ الجزء الثاني math114
ريض 114 الجزء الثاني
-
-
CHAPTER 8: Infinite series
- 8.2 The Concept of Convergent Series 11:07
- 8.2 Examples of Convergent and Divergent Series 15:06
- 8.2 Geometric Series 17:38
- 8.2 Kth-Term Test for Divergence 09:29
- 8.3 Integral Test 16:47
- 8.3 P-Series 09:44
- 8.3 Comparison Test 19:57
- 8.3 Limit Comparison Test 11:33
- 8.4 Alternating Series 23:59
- 8.5 Absolutely Convergence 20:34
- 8.5 Ratio Test 16:50
- 8.5 Root Test and Summary of Convergence Tests 07:09
- 8.6 Power Series 15:50
- 8.6 Convergence of Power Series 21:09
- 8.6 Interval and Radios of Convergence 17:12
- Exercise 8.2 Part 1 16:16
- Exercise 8.2 Part 2 12:07
- Exercise 8.3 part 1 32:39
- Exercise 8.3 Part 2 18:09
- Exercise 8.4 Part 1 05:16
- Exercise 8.4 Part 2 12:58
- Exercise 8.5 Part 1 17:34
- Exercise 8.5 Part 2 03:23
- Exercise 8.5 Part 3 02:04
- Exercise 8.6 Part 1 45:42
- Exercise 8.6 Part 2 07:47
- CHAPTER 9: Parametric equations
-
CHAPTER 12: Functions of several variables and Partial Differentiation
- 12.1 Functions of Several Variables 19:53
- 12.2 Limit of Function with Two Variables 13:03
- 12.2 Showing that Limit Does Not Exist 20:55
- 12.2 Showing that Limit Does Exist by Squeeze Theorem 19:28
- 12.2 Limit of Function with Three Variables 04:32
- 12.2 Example 8 and 9 14:12
- 12.3 Partials Derivatives 13:31
- 12.3 Higher Order Partial Derivatives 17:34
- 12.4 Tangent Planes and Normal Line 21:36
- 12.5 Chain Rule Part 1 16:18
- 12.5 Chain Rule Part 2 16:23
- 12.6 Directional Derivative 17:48
- 12.6 The Gradient 15:18
- Exercise 12.1 part 1 05:50
- Exercise 12.1 part 2 02:35
- Exercise 12.2 part 1 21:20
- Exercise 12.2 Part 2 03:13
- Exercise 12.3 Part 1 42:04
- Exercise 12.4 17:03
- Exercise 12.5 28:06
- Exercise 12.6 11:20
-
CHAPER 13: Multiple Integrals
- 13.1 Double Integral Over a Rectangular 15:58
- 13.1 Double Integral Over a General Region 23:36
- 13.1 More Examples about Double Integral Over a General Region 34:07
- 13.3 Double Integral in Polar Coordinate 23:43
- 13.5 Triple Integral Defined on a Rectangular Box 10:00
- 13.5 Triple Integral Defined on a General Shape in 3-dimention 12:31
- 13.4 Surface Area 25:02
-
Exercises
- 8.2 Infinite Series (Q2, Q4, Q6, Q8, Q10, Q18, Q24) 16:16
- 8.2 Infinite Series (Q1, Q3, Q5, Q7) 12:07
- 8.2 Infinite Series (Q17, Q19, Q20) 13:50
- 8.3 The Integral Test and Comparison Tests (Q1, Q3, Q5(b), Q6(a), Q9, Q11(a), Q13) 32:39
- 8.3 The Integral Test and Comparison Tests (Q2, Q5(a), Q6(b)) 18:09
- 8.3 The Integral Test and Comparison Test (Q11(b), Q15) 15:40
- 8.4 Alternating Series (Q3, Q4, Q7, Q8, Q11, Q13) 12:58
- 8.4 Alternating Series (Q1, Q2, Q5) 05:16
- 8.5 Absolute Convergence and the Ratio Test (Q3, Q8, Q9, Q11, Q22, Q24, Q29, Q35) 17:34
- 8.5 Absolute convergence and Ratio Test (Q2, Q21) 03:23
- 8.5 Absolute Convergence and the Ratio Test (Q14) 02:04
- 8.6 Power Series (Q4, Q6, Q7, Q15, Q16) 45:42
- 8.6 Power Series (Q2, Q3) 07:47
- 9.1 Parametric Equation (22, 23, 27, 28) 10:19
- 9,2 Calculus and Parametric Equation (Q1, Q4, Q9, Q11) 31:22
- 12.1 Functions of Several Variables (Q1, Q3) 05:50
- 12.1 Functions of Several Variables (Q2) 02:35
- 12.1 Functions of Several Variables (Q4, Q5, Q6, Q7) 14:52
- 12.2 Limit and Continuity (Q7, Q8, Q9, Q11, Q15, Q16, Q27) 21:20
- 12.2 Limit and Continuity (Q6, Q12) 03:13
- 12.3 Partial Derivatives (Q3, Q5, Q9, Q13, Q15) 42:04
- 12.3 Partial Derivatives (Q1, Q12, Q14) 25:09
- 12.4 Tangent Planes (Q2a, Q3a, Q6a) 17:03
- 12.4 Tangent Planes (Q1b, Q2b, Q6b) 14:56
- 12.5 The Chain Rule (Q4, Q5, Q9) 28:06
- 12.5 The Chain Rule (Q6, Q10) 14:00
- 12.6 Directional Derivative and the Gradient (Q3, Q7, Q11) 11:20
- 12.6 Directional Derivative and the Gradient (Q1, Q6, Q12) 10:28
- 13.1 Double Integral (Q10, Q43, Q14, Q44) 22:02
- 13.1 Double Integral (Q9, Q35, Q36) 16:42
- 13.3 Double Integral in Polar Coordinate (Q8, Q31) 11:57
- 13.3 Double Integral in Polar Coordinate (Q7) 04:41
- 13.4 Surface Area 12:52
- 13.5 Triple Integral (Q2, Q5) 18:37
- Quiz 2
- Mid 2
- Final
-
CHAPTER 8: Infinite series
- ريض 114 الجزء الثاني
-
• Hadeel Mohammed Almadiny. • Lecturer in Vision Academy. • Specialty in mathematics. • Graduated from (KSU)with calss honor. ~ Experiences: • teacher in international school. • English language. • Strategic teaching course. ~ Achievements: • Title of scientific meeting leader in KSU.
-
Student feedback
5
150 SAR
Lectures
94 Videos
Duration
27:10:05
Material
3 Files
Assignments
Yes, Completely
Labs
No
Project
No
Certificate
Not Applicable
Reviews (0)
Real reviews from real students.
No reviews yet.